
Technische Universität München WS 2017/18
Institut für Informatik
Theoretical Computer Science

Fundamental Algorithms 3

Exercise 1 (Worst-Case)
Consider a partitioning algorithm that, in the worst case, will partition an array of m elements into two
partitions of size bεmc and d(1− ε)me, where ε is fixed and 0 < ε < 1. Show that a QuickSort algorithm
based on this partitioning has a worst-case complexity of O(n log n) (in terms of comparisons between array
elements). Hint: Solve the recurrence by guessing the solution and finding the involved constants.

Exercise 2 (Iterative MergeSort)
The following iterative implementation of the MergeSort algorithm is proposed. The procedure MergeIP
is equivalent to the procedure Merge discussed in the lecture, but can work directly on the array A (i.e.,
merges two adjacent sub-arrays of A).

Algorithm 1: MergeSortIt
Input: A: Array of size n = 2k

Result: Array A sorted
k ← log2(n);
m← 2;
for L = 1 to k do

for i = 0 to (n/m)− 1 do
MergeIP(A[i ·m .. i ·m + (m/2)− 1],

A[i ·m + (m/2) .. i ·m + (m− 1)],
A[i ·m .. i ·m + (m− 1)]);

end
m← 2 ·m;

end

1. Describe shortly and in plain words, how MergeSortIt compares to the recursive MergeSort
implementation discussed in the lecture. For that purpose, draw a diagram that illustrates the sorting
of some array with length 8 for MergeSortIt.

2. Formulate a loop invariant for the L-loop of the algorithm, and prove its correctness.

1


